Skip to main content
Log in

Investigating a Fluorobenzene Based Single Electron Transistor As a Toxic Gas Sensor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A fluorobenzene based single electron transistor (SET) has been investigated for the detection of toxic gases viz. NH3, HCN, AsH3, and COCl2, within the framework of density functional theory (DFT) formalism based first-principles approach. Initially, the adsorption mechanism between the fluorobenzene quantum dot and the toxic gases (NH3, HCN, AsH3, and COCl2) has been analyzed in terms of adsorption energy, distance of adsorption, DOS profiles and the charge transfer analysis. Later, the exclusive property of charge stability diagram of SET has been utilized to provide the necessary electronic fingerprints for detection of toxic gases. The results suggest that the fluorobenzene SET can be a potential sensor for proposed toxic gases based on the wide operational temperature range and high detection ability as witnessed from the electronic fingerprints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Takao, K. Miyazaki, Y. Shimizu, and M. Egashira, J. Electrochem. Soc. 141, 1028 (1994).

    Article  CAS  Google Scholar 

  2. K. Cheah, M. Forsyth, and V.-T. Truong, Synth. Met. 94, 215 (1998).

    Article  CAS  Google Scholar 

  3. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004).

    Article  CAS  Google Scholar 

  4. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, and C. Zhou, Appl. Phys. Lett. 82, 1613 (2003).

    Article  CAS  Google Scholar 

  5. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003).

    Article  CAS  Google Scholar 

  6. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, Nature 425, 698 (2003).

    Article  CAS  Google Scholar 

  7. M. Fuechsle, J.A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L.C.L. Hollenberg, G. Klimeck, and M.Y. Simmons, Nat. Nanotechnol. 7, 242 (2012).

    Article  CAS  Google Scholar 

  8. Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwdate, Y. Nakajima, S. Horiguchi, K. Murase, and M. Tabe, Electron. Lett. 31, 136 (1995).

    Article  CAS  Google Scholar 

  9. T. Ihn, J. Güttinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen, S. Hellmüller, T. Frey, S. Dröscher, C. Stampfer, and K. Ensslin, Mater. Today 13, 44 (2010).

    Article  CAS  Google Scholar 

  10. A. Barreiro, H.S.J. Van Der Zant, and L.M.K. Vandersypen, Nano Lett. 12, 6096 (2012).

    Article  CAS  Google Scholar 

  11. M.A. Kastner, Rev. Mod. Phys. 64, 849 (1992).

    Article  Google Scholar 

  12. T.A. Fulton and G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

    Article  CAS  Google Scholar 

  13. S.J. Ray, J. Appl. Phys. 118, 34303 (2015).

    Article  Google Scholar 

  14. S.J. Ray, Sens. Actuators B Chem. 222, 492 (2016).

    Article  CAS  Google Scholar 

  15. Y.-D. Guo, X.-H. Yan, and Y. Xiao, J. Phys. Chem. C 116, 21609 (2012).

    Article  CAS  Google Scholar 

  16. K. Gaurav, B. SanthiBhushan, S.J. Ray, and A. Srivastava, IEEE Trans. Nanotechnol. 18, 1148 (2019).

    Article  CAS  Google Scholar 

  17. A. Sharma, M.S. Khan, M. Husain, M.S. Khan, and A. Srivastava, IEEE Sens. J. 18, 2853 (2018).

    Article  CAS  Google Scholar 

  18. B. Jain, K. Vinod Kumar, B. SanthiBhushan, K. Gaurav, M. Pattanaik, and A. Srivastava, J. Comput. Electron. 17, 1515 (2018).

    Article  CAS  Google Scholar 

  19. S.J. Ray, J. Appl. Phys. 118, 044307 (2015).

    Article  Google Scholar 

  20. S.J. Ray, J. Appl. Phys. 116, 244307 (2014).

    Article  Google Scholar 

  21. S. Rani and S.J. Ray, Carbon N. Y. 144, 235 (2019).

    Article  CAS  Google Scholar 

  22. H. Song, Y. Su, L. Zhang, and Y. Lv, Luminescence 34, 530 (2019).

    Article  Google Scholar 

  23. V.G. Reshma and P.V. Mohanan, J. Lumin. 205, 287 (2019).

    Article  CAS  Google Scholar 

  24. M. Ganesan and P. Nagaraaj, Anal. Methods 12, 4254 (2020).

    Article  CAS  Google Scholar 

  25. P. Mini, M.A. Springer, M.R. Grace, G.H. Dennison, and K.L. Tuck, Chem. Commun. 56, 5605 (2020).

    Article  CAS  Google Scholar 

  26. L. Nygaard, I. Bojesen, T. Pedersen, and J. Rastrup-Andersen, J. Mol. Struct. 2, 209 (1968).

    Article  CAS  Google Scholar 

  27. J.F. Stanton, J. Am. Chem. Soc. 123, 2701 (2001).

    Article  CAS  Google Scholar 

  28. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.-E. Lee, S.T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M.L.N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, and K. Stokbro, J. Phys.: Condens. Matter 32, 15901 (2019).

    Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT) (2009). https://gaussian.com/. Accessed 15 March 2020.

  30. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  31. K. Stokbro, J. Phys. Chem. C 114, 20461 (2010).

    Article  CAS  Google Scholar 

  32. W.M.H. Sachtler, G.J.H. Dorgelo, and A.A. Holscher, Surf. Sci. 5, 221 (1966).

    Article  CAS  Google Scholar 

  33. J.E. Boggs, F. Pang, and P. Pulay, J. Comput. Chem. 3, 344 (1982).

    Article  CAS  Google Scholar 

  34. J.C. Slater, J. Chem. Phys. 41, 3199 (1964).

    Article  CAS  Google Scholar 

  35. R. Duschek, F. Mittendorfer, R.I.R. Blyth, F.P. Netzer, J. Hafner, and M.G. Ramsey, Chem. Phys. Lett. 318, 43 (2000).

    Article  CAS  Google Scholar 

  36. B. S. Bhushan, A. Srivastava, J. Bhadouria, R. Bhatia, and P. Mishra, in IEEE International Symposium on Nanoelectronic and Information Systems (2016), pp. 113–117.

  37. S.R. Jezowski, R. Baer, S. Monaco, C.A. Mora-Perez, and B. Schatschneider, Phys. Chem. Chem. Phys. 19, 4093 (2017).

    Article  CAS  Google Scholar 

  38. B. SanthiBhushan, M.S. Khan, A. Srivastava, and M.S. Khan, IEEE Trans. Electron Devices 63, 1232 (2016).

    Article  Google Scholar 

  39. R. Chowdhury, S. Adhikari, and P. Rees, Phys. B Condens. Matter 407, 855 (2012).

    Article  CAS  Google Scholar 

  40. S.J. Ray and R. Chowdhury, J. Appl. Phys. 116, 34307 (2014).

    Article  Google Scholar 

  41. K. Lee, G. Kulkarni, and Z. Zhong, Nanoscale 8, 7755 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the ABV-Indian Institute of Information Technology and Management, Gwalior, India, for providing computational facilities at CNT Lab. KG and RM are thankful to the Science and Engineering Research Board, Department of Science and Technology, India (DST No. EMR/2017/000344) for the Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Srivastava.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaurav, K., SanthiBhushan, B., Mehla, R. et al. Investigating a Fluorobenzene Based Single Electron Transistor As a Toxic Gas Sensor. J. Electron. Mater. 50, 1022–1031 (2021). https://doi.org/10.1007/s11664-020-08663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08663-0

Keywords

Navigation